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SOLID-PHASE REACTION KINEFICS 
Meaningful kinetic constants vs .  formal parameters 
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Abstract 

It is argued that, for the macroscopic parameters of conventional kinetic models to become 
meaningful, they may be and must be expressed in terms of elementary single-barrier processes. 
To accomplish this means to associate some (external) extensional measure with a single-barrier 
elementary act, remaining within the logic of the existing geometrical-probabilistic scheme. A 
manner of doing this involving the use of Dirichlet fragmentations is suggested. 
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Introduction 

In a discussion of the meaning of conventional kinetic parameters, three as- 
pects must be considered. 

First of all, the meaning of the parameters is determined by the logic of 
model derivation. If the adopted assumptions are taken into account, this logic 
imposes definite restrictions and conditions on the model parameters. If they 
are ignored, a model is converted into a simple approximation function. 

On the other hand, particular numerical values of model parameters are ob- 
tained (through the use of well-known statistical methods) from experimental 
data. These data reflect the "complicated reality": polydisperse or polycrystal- 
line samples, possible change of mechanism or simultaneous realization of two 
mechanisms, etc. The substantiation of using this or that model practically al- 
ways involves gaps, and this accordingly casts doubt on the meaning of the re- 
stored parameters. 

A further aspect of the problem is that, in spite of the complex reality, we 
(consciously or subconsciously) keep in mind the well-defined rate constants of 
elementary single-barrier processes as the "reference point" when we talk about 
the meaning of macroscopic kinetic parameters. 
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The aim of the present paper is to discuss some essential interrelations be- 
tween these three aspects of the problem. 

W h a t  p a r a m e t e r s  a r e  we  dea l ing  wi th?  

At present, more than twenty various (isothermal) mathematical models are 
used in heterogeneous chemical kinetics [ 1-3]. If it is agreed that the models of 
order type are borrowed from homogeneous kinetics without sufficient substan- 
tiation, we are dealing (from the viewpoint of meaning) with parameters of two 
main types: 

- parameters of diffusive models; 
- parameters of geometrical-probabilistic models. 

It is clear that the criteria for estimating the meanings of these parameters are 
essentially different. If a process is believed to be limited by diffusion, the ap- 
propriate model is not expected to reflect any chemical features and, to be 
meaningful, the corresponding parameters must have the meaning of diffusion 
coefficients or be expressible through these coefficients. We shall be interested 
in the possibility of representing chemical regularities of heterogeneous reac- 
tions in mathematical models (without which we cannot talk about the interre- 
lation between observed kinetic behaviour and reaction mechanism). 
Accordingly, we shall concentrate on the meaning of geometrical-probabilistic 
models. 

Geometrical-probabilistic formalism, which originated in classical publica- 
tions [4--6], is based on the concepts of nucleus formation, growth and impinge- 
ment. This determines to some extent the nature and meaning of the model 
parameters. Any geometrical-probabilistic model contains two main parame- 
ters, depending in the general case on time t: 

- the intensity of nuclei formation l(t); 
- the linear rate of nucleus growth v(n,t), which also depends on the direc- 

tion n. 

In addition, it includes the dimension of the problem, v. 
In the most general case, the following restrictions are imposed on these pa- 

rameters [4, 7]: 

1. The nucleus formation process must be according to Poisson. 
2. The linear growth rate must admit the representation v(n,t) = u(t)c(n) to 

separate the form factor c(n). The ends of c(n) vectors starting from the origin 
must form a convex surface. 

3. The corresponding dependence on n may be arbitrary, but one and the 
same for all points of the volume (surface) at given instant t. This means that all 
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nuclei must be either spherical or oriented in the same manner. It is worthy of 
note that the demand of a spherical form concerns not only the small nuclei of 
nearly critical size. This form has to be kept all the time. Naturally, nucleus im- 
pingement stops their growth in some directions, but in other directions they 
must grow as spheres till the very end of a process. 

In the case of a particular equation, some additional conditions are imposed. 
Consider, for example, one of the most frequently used equations: 

a(t) = 1 - e- pt" (1) 

Like any other geometrical-probabilistic model, this one must contain two 
above-mentioned parameters. In this case, both are included in p [4]: 

p = ( 4 n / 3 ) c ,  i u  v (2) 

where c v = (1/4n) fcV(n)d~ and integration is carried out over the surface of the 
unit sphere. This combination of parameters results from two additional as- 
sumptions: I ( t )  = c o n s t .  = I and  u( t )  = c o n s t .  = u.  At first sight, these as- 
sumptions seem to be quite natural: the "veritable" kinetic constants must not 
depend on time. But on the other hand they agree poorly With simulated reality 
(for instance, with the considerable possible variation in the activity of potential 
centres). 

The parameter p includes the dimension of a problem v, involving the pa- 
rameter m: m = v + 1. In the framework of geometrical-probabilistic formal- 
ism, all results are independent of v [7]. However, its value must be an integer: 
either 2 or 3. When parameters are restored from experimental data, it may well 
appear that some fractional value of m provides a better fit. This may be due to 
the violation of one or more of the above-mentioned conditions. It should be 
taken into account that the choice of a fractional m deprives parameters I and u 
of their meaning, Eq. (1) being transformed into a formal approximation func- 
tion with a rather weak approximation ability. It is also worthy of note that the 
value of v must be set up before the inverse kinetic problem is solved. 

Such is the meaning of the parameters determined by the logic of the geo- 
metrical-probabilistic scheme. And what meaning would one like to attach to 
them as concerns a discussion of the chemical features of heterogeneous reac- 
tions? 

W h a t  m e a n i n g  is imp l i ed?  

When talking about the meanings of kinetic parameters, we (consciously or 
subconsciously) draw an analogy with homogeneous chemical kinetics. In this 
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framework, the question "What is the meaning of the parameter of the kinetic 
model?" is equivalent to the question "In what way is this macroscopic parame- 
ter expressed through the microscopic rate constants of elementary single-bar- 
rier processes?" 

Naturally, the questions arise of whether it is sensible and whether it is pos- 
sible to keep the same criterion of meaningfulness for parameters of geometri- 
cal-probabilistic models. 

As concerns the first question, we shall touch (apart from general aesthetic 
attractiveness) on only one of the numerous arguments in favour of the positive 
answer, i.e. the well-known problem of temperature dependence. It is common 
practice to check the model parameters for the f o r m a l  fulfilment of the Ar- 
rhenius law. The misinterpretations here are due not so much to the disputable 
character of the approach [8, 9] as to the essential ambiguity of the possible 
conclusions. 

Suppose that there is no formal fulfilment. It does not necessarily follow that 
the regime of a process is different from the kinetic one. It may well be, for ex- 
ample, that some constant involves macroscopic parameter of the elementary 
processesin the form of an algebraic sum, i.e. 

= ):1 -+ ( 3 )  

This is enough for a mismatch, even provided that the separate elementary 
acts satisfy the Arrhenius law and the process as a whole proceeds in the purely 
kinetic regime. To provide the fulfilment, the rate constants of elementary pro- 
cesses must be contained in the expression for the macroscopic parameter in the 
form of a product or quotient (possibly to certain powers): 

K = ( 4 )  

However, even in this case the obtained value of the "observed" (or "effec- 
tive") activation energy E' may be provided with a meaningful interpretation 
only if the exact form of relationship (4) is known and E' may be presented in 
the form 

E' = nlEl + nzE2 + n3E3 + ... (5) 

Otherwise, the value of E' has no explicit relation to any particular activated 
state. In this case, the broad range of observed values of E' may even cast doubt 
on whether the discrete activated states actually exist for reactions with solids 
[8] 

A similar ambiguity of argumentation is reproduced almost word for word in 
practically all respects as concerns the interpretation of the restored values of 
the parameters. It must be recognized that the whole range of related problems 
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may be solved finally only in terms of single-barrier processes. In this connec- 
tion, we are faced with two questions: (i) Are the geometrical-probabilistic con- 
cepts and the concept of single-barrier processes compatible in principle7 If so, 
(ii) in what particular way may the appropriate meaning be attached to the geo- 
metrical-probabilistic parameters? 

The answer to the first question is connected with the mathematical structure 
of the discussed geometrical-probabilistic scheme. According to Erofeev [ 10], 
the same probabilistic scheme may be used to obtain the well-known equations 
of mono- and bimolecular reactions (without integrating equations of the law of 
mass action). In our context, this important result leads to the following picture. 
We have the formal probabilistic scheme, in the framework of which some 
"complicated" probability may be calculated through certain "simple" prob- 
abilities. This scheme may be provided with the "homogeneous interpretation", 
and the logic of derivation of mono-and bimolecular equations helps towards 
an understanding of the place of single-barrier constants in its structure. The 
same scheme may be provided with the "heterogeneous interpretation" in terms 
of nucleus formation, growth and impingement. This leads to the results ob- 
tained in [4-6], and in particular to Eq. (1). 

From a formal aspect, the discussed probabilistic scheme is based on the fol- 
lowing considerations. The degree of conversion ct is identified with some prob- 
ability P. In the homogeneous case, this is the probability that an arbitrary 
molecule in a gaseous mixture will have reacted up to the given instant of time 
t. In the heterogeneous case, it is the probability that an arbitrary point of the 
original phase will have appeared inside the new phase up to the instant t. The 
logic of probability theory is the calculation of "more complicated" prob- 
abilities through "more simple" probabilities, which are treated as elementary 
ones within the problem and are specified on the basis of considerations exceed- 
ing the limits of probability theory (and often the limits of formal mathematical 
considerations too). The elementary probability ~ is determined as the prob- 
ability that the given molecule i will have reacted in thej-th subdivision of the 
time interval 0 = to < t~ </2 < t3 -< ... -< to = t (in the homogeneous case), or 
that the given point will be consumed by the new phase within thej-th subdivi- 
sion of the time interval (in the heterogeneous case). 

From a mathematical aspect, the discussed scheme is based on the theorem 
of the multiplication of probabilities of mutually independent events. The events 
mentioned above are not mutually .independent, but the opposite events charac- 
terized by probabilities qi J = 1 - p,) (e.g. the probability that the given molecule 
i will not have reacted within thej-th subdivision of the time interval). For these 
probabilities, we may write 
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. (6)  
Qi= l-Iq,  J 

j=l 

where Qi = 1 - Pi. The further calculations make it possible to pass from ~ to 
and include no other meaning. By taking logarithms, we may transform the 

product  into a sum: 

n n 

lnQi : In l--iqi i = )-"In qi i 
.i=l j=l 

and then pass naturally to the limit of At ---> 0: 

In Qi = In ( 1  - P i )  = lim 
n -->co 

n 

In (1 - pi j) 
j=l 

After expanding In in a series up to the first 

In (1 - Pi) = lim ~ In 
n -~oo j=l 

term, we get 

t 

(- p?) = -~pdt 
o 

(7) 

(8)  

(9) 

As a result, the final equation takes the form 

ct = P =  1 - exp d 

It is worth emphasizing once more that Eq. (10) has the same meaning as 
Eq. (6): it expresses some probability P of a "complicated" event through some 
probability p of a "simple" event. This is where the boundary between the 
meaningful and the formal lies: formal considerations determine the form of re- 
lationship (10), but the meaning of "elementary" probabilities must be as- 
signed, various possibilities being admitted by the formal scheme itself. 

Setting (according to [10])p = const. = tc in Eq. (10), we immediately arrive 
at the equation of a monomolecular reaction: 

a = 1 - exp ( -  rd) (11) 

In this interpretation, Eq. (11) includes the only parameter to, and this pa- 
rameter has the meaning of the rate constant of a single-barrier process (in con- 
trast with the parameter p in the externally similar Eq. (1)). 

For us, the case of bimolecular reaction is more interesting. To obtain the 
corresponding equation from Eq. (10), we have to set [10] 
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p = n ( b  - o a) (12) 

where rl is a parameter, and a and b are the original concentrations of reagents 
A and B participating in the reaction A + B --~ products. From our viewpoint, 
two aspects are essential here: (i) the probability p,  treated within the prob- 
abilistic scheme as the "elementary" one, attains the complex structure outside 
this scheme; (ii) since the co-factor (b - ota) is simply the number of particles 
nB of the reagent B, probabilityp includes not only the single-barrier constant ~:, 
but also some other (different in nature) quantities: p = r..Zo.ns where Zo is the 
collision factor. 

In terms of nucleus formation, growth and impingement, the probability p 
acquires a more complex structure [4, 7]: 

p = l_~(t).Ls(x , t) (13) 

where the nucleation law L,(t) is the intensity of nucleus formation, and the 
growth law 

c(! 1 
includes the linear growth rate u(t), form factor c and dimension v. The restric- 
tions for these parameters, determined by the probabilistic scheme itself, were 
discussed in Section 1. It is clear that these parameters can have no relation to 
single-barrier processes: publications [4--6] were devoted to phase transitions, 
and no chemical transformations were assumed. At the same time, the examples 
of mono- and bimolecular reactions demonstrate the possibility of talking about 
single-barrier processes within the framework of the discussed scheme. 

Model parameters in terms of single-barrier constants 

One of the material features of the parameters determined by the geometri- 
cal-probabilistic scheme is that they have to represent extensional relations. 
This is a direct consequence of the concepts of nucleus formation and growth: 
it is necessary to characterize nuclear dimensions, mutual situation and im- 
pingements. Homogeneous kinetics provides no appropriate analogy. 

In this respect, the peculiarity of heterogeneous kinetics is that, in aiming to 
operate with single-barrier constants, one must at the same time keep this ex- 
tensional character of macroscopic kinetic parameters. The single-barrier pro- 
cesses themselves possess no external extensional measure. (The internal 
characteristic of a single-barrier process is its cross-section [11]. This means 
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that some extensional measure has to be associated with an elementary single- 
barrier act (characterized by its meaningful constant). 

A heterogeneous reaction is localized in a number of (singly connected) re- 
action zones situated around growing nuclei. From this viewpoint, to associate 
an extensional measure with a single-barrier elementary act means to answer 
the following questions: 

- Does this act result in the appearance of a new, singly connected zone (nu- 
cleus formation) or in the evolution of one of the existing zones? 

- What is the distance of zone propagation (in the given direction) due to a 
single elementary act, and how many similar acts proceed (practically) simulta- 
neously? 

- In what way are the "domains of influence" and the mutual situation of 
growing nuclei changed due to a new zone formation? 

One may answer these questions in terms of the suggested model repre- 
sentation based on the use of Dirichlet fragmentations [12, 13]. As concerns the 
discussed problem, the main advantage of this approach is that, in terms of 
Dirichlet fragmentations, a definite domain of the crystal space may be associ- 
ated with any lattice point, both the symmetry and the values of lattice parame- 
ters being taken into account. 

At this stage, we are faced with the non-equivalence of dimension values 
v= 2 and v= 3 determined by mathematical considerations. The complete theory 
of Dirichlet fragmentations exists only for 2-dimensional crystal lattices (theory 
of planigons [ 14]). In the case v= 3, there is no corresponding complete theory. 
However, at the same time, an argument of quite a different nature in favour of 
the 2-dimensional consideration may be pointed out. Heterogeneous reactions 
not infrequently start at the surface, their development along the surface and 
into the bulk differing materially. By setting v=3, we deprive ourselves of the 
possibilities of representing this in the geometrical-probabilistic models. 

Considering the growing nucleus as a figure consisting of planigons [12, 
13], we may easily associate the extensional measure with the single-barrier act 
responsible for the evolution of the reaction zone and characterized by micro- 
scopic rate constant r .  It is assumed that one of the species participating in this 
act is situated at the centre of action of the planigon. The accomplishment of 
one elementary act means that one planigon, characterized by some extensional 
measure ix, is added to the growing nucleus. The complete table of planigons, 
with their forms, dimensions, and one-to-one correspondence with two-dimen- 
sional Fedorov groups, is given in [14]. Since the elementary acts are equiprob- 
able for all planigons forming the reaction zone at the given instant of time, all 
of them may be considered as joining the growing figure practically simultane- 
ously. This makes it possible to write 

J. D~ermal Anal., 44, 1995 



KOROBOV: SOLID-PHASE REACTION KINETICS 195 

L,('r t)= r~.ix.N(x, t) (14) 

where N(x, t) is the number of planigons that at instant t form the nucleus that 
appeared at instant z. 

Following this logic, we also have to associate some extensional measure 
with/_~. The way to do this is not so obvious: nucleus formation is usually 
treated as a purely temporal process. The aim may be achieved by using the sec- 
ond variety of Dirichlet fragmentations, random mosaics [15]. In these terms, 
we may represent the correspondence between the elementary act leading to the 
formation of a new nucleus and the cell of the random mosaic characterized by 
a definite extensional measure IX', depending among other factors on the number 

and "age" of the existing nuclei [13]. Each appearance of a new nucleus leads 
to a rearrangement of the random mosaic. 

As a result, we arrive at the following interconnection of temporal and ex- 
tensional measures of a process: temporal measures are the rate constants of sin- 
gle-barrier elementary acts responsible for the origin and evolution of the 
reaction ~one, and extensional measures are the corresponding measures Ix and 
Ix' determined by planigons and random mosaics, respectively. This enables us 
to attach the meaning required to discuss the chemical features of heterogeneous 
reactions to the parameters of geometrical-probabilistic models. The forms and 
dimensions of the planigons, and also the characteristics of the random mosaics, 
are determined by the particular reaction. 

However, with the appropriate interpretation this provides only the geomet- 
rical-probabilistic scheme itself, making nothing clearer in respect to its rela- 
tion with real complicated reactions. The term "heterogeneous reaction" is 
practically always accompanied by the epithet "complicated". This epithet is of 
little value until the "complicated reaction" is compared with a "simple reac- 
tion". Here we are faced with one more peculiarity of heterogeneous kinetics. 
In homogeneous kinetics, the simple reaction is the totality of independent simi- 
lar elementary acts. This is the notion used to construct the models of compli- 
cated multistage reactions. In heterogeneous kinetics, the interrelation between 
the notion of a simple reaction and the notion of an elementary act is much 
more involved, due to the simultaneous spatial and temporal interconnection of 
the separate elementary acts. It seems that the earlier-suggested [12, 13] 2-di- 
mensional model representation of a heterogeneous reaction as the ever-de- 
creasing averaged cell of the random mosaic with the ever-growing nucleus 
(consisting of planigons) inside it is suitable in our context for playing the role 
of a simple reaction. The manner of its further formalization is determined to a 
considerable extent by the logic of expressing model parameters in terms of sin- 
gle-barrier rate constants. 
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To conclude, it follows from the given considerations that the meaningful ki- 
netic parameters must be expressed in terms of single-barrier processes. Only 
in this case may they be considered as meaningful in a discussion of the chemi- 
cal features of heterogeneous reactions. At the same time we have to remain 
within the limits of the existing geometrical-probabilistic scheme in order not to 
miss the important concepts of nucleus formation, growth and impingement. 
This scheme is shown to be adaptable for associating an extensional measure 
with a single-barrier process in terms of Dirichlet fragmentations. This trans- 
forms the problem into two dimensions and requires the proper mathematical 
formalization. 
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Zusammenfassung m Es ist umstritten, ob makroskopische Parameter herk6mmlicher kinctis- 
cher Modelle sinnvoll sind und ob sie in Ausdr/icken yon Elementarprozcssen dargcstellt werden 
k6nnen bzw. m0ssen. Dies zu errcichen bedeutet, einige erweiterte Messungen mit Elementare- 
reignissen zu verbinden und dabei innerhalb der Logistik yon existierenden Schemen geomctris- 
cher Wahrscheinlichkeit zu bleiben. Hierzu wird eine Methode unter Einbcziehung yon 
Dirichlct-Fragmentationen vorgeschlagen. 

J. Thermal Anal., 44, 1995 


